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I. INTRODUCTION

In this paper, the existence of a best approximation to a continuous
function f over a discrete set contained in [0, IJwith respect to certain non
linear approximating families from qo, IJ is shown when f is a "normal
point" and when the discrete set is sufficiently fine. This is accomplished by
showing that the Remes algorithm can be used to generate a sequence of
approximating functions which converges to a function which turns out to
be a best approximation over the discrete set. This also shows that a best
approximation over a discrete set can be found by using the Remes algorithm.
In addition, we generalize the result, due to Werner [7], that as the discrete
set fills up the interval, best approximation over the discrete set converges to
best approximation over the interval. It is essential that this occur if one is
to try to compute a best approximation over [0, IJusing a computer since
the computer uses only a finite number of points in [0, I].

2. DESCRIPTION OF ApPROXIMATING FAMILY

Let P be an open set in Euclidean N-space. Consider the family V of real
valued functions F(A, x), where A = (al ,..., aN) E P and x E [0, IJ. The
functions F(A, x) and of(A, x)/oai, i = 1,2,... , N, are assumed to be
continuous in both A and x. In addition, the following conditions must be
satisfied.

I. For each A E P, the functions of(A, x)/oa., i = 1,... , N generate
a Haar subspace of dimension d(A) ;;:, 1. (If hex) is any nonzero element of
the span of {oF(A, x)/oai}~l , then hex) has at most d(A) - 1 distinct zeros.)

II. For each A E P, F(A, x) =1= F(A', x) implies that F(A, x) - F(A', x)
has at most d(A) - 1 zeros. Among the nonlinear families that can be
treated under the theory are the family of rational functions

Rmn = {p/q: op ~ n, op ~ m, q > °on [0, 1], p and q are relative prime),
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where p and q are polynomials with 8p denoting the degree of p and the
family of exponential functions

~ "=/=' • '-1 IJor 1 J, I,J- ,... ,n\.

For more information on these and other families that meet the above
conditions, see [2].

3. PRELIMINARY RESULTS AND NOTATION

F(A *) is best approximation to IE C[O, I] over [0, I] if II F(A *) - III ~
II F(A) - III for all A E P, where I!/II = maxO';;"''':1 If(x)l. If M denotes a
finite subset of [0, I], then F(AM) is a best approximation to lover M if
II F(AM) - 111M ~ II F(A) - 111M for all A E P, where II/IIM = max"'EM I f(x)l.

DEFINITION I. If n denotes the maximal value of d(A) for A E P, a
function IE C[O, I] is called a normal point if it has a best approximation
F(A *) over [0, I] with d(A *) = n.

IfI is a normal point and F(A *) is a best approximation to lover [0, 1],
then by the characterization theorem due to Meinardus [5], there exist a
set of n + I critical points °~ Xl < X2 < ... < Xn+l ~ I such that

F(A*, x,) - f(Xi) = -(F(A*, Xi+l) - f(Xi+I»

for i = I, ..., nand

!I F(A*) - III = [F(A*, Xi) - f(Xi) I

(I)

. (2)

for i = I, ... , n + 1. Since the critical points do not have to be unique, we
make the following definition.

DEFINITION 2. Let D = {u = (ul ,... , Un+l) E En+l : °~ UI < ... <
un+l ~ I} and let C = {u ED: (I) and (2) hold with x, replaced by Ui}'
Also, let II U II = maxI":,":n+l I Ui I·

In Harrar and Loeb [1], we find the following result.

LEMMA 1. Let A = (aI' a2 ,... , aN) E P and d(A) = q. Further, let
Xl' X2 ,... , x q be distinct points in [0, I] and set F(A, Xi) = cilor i = 1,2,... , q.
Then, lor sufficiently small E > 0, there exists a 0 > °such that the equations

F(A, Xi) = Ci , i = 1,2,... , q, (3)
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with I c, - c, I :(; S having a unique solution A = (aI' a2 , ••• , aN) such that
ai = Qi for q + 1 :(; i ~ N and II A - A II ~ E 1 (Le., F(A, x) satisfies (3)
implies that an A' equivalent to A can be found such that II A' - A II :(; E).

The proof of the next result is due to Barrar and Loeb [I].

LEMMA 2. Let f be a normal point with best approximation F(A *). There
exists a S* > 0 such that for S :(; s* L = {F(A) E v: II F(A *) - F(A)II :(; S}
is compact.

Proof Let Xl'"'' X n be n distinct points in [0, 1]. Choose El > 0 such
that II A - A * II :(; El implies that A E P., Now, choose E > 0 and 8 > 0
as in Lemma 1 such that E < El • Let 8* = 8 and let {F(A)"}~~l be a sequence
in L. Then, I F(A", x,) - F(A*, xi)1 < 8*. l}y Lemma 1, there exists Ak
equivalent to Ak, k = 1,2,... , such that II A" - A II :(; E. By going to sub
sequences if necessary, we can assume that limk-..oo AI' = A. Since
II A - A * II :(; E, we have that A E P. Since F(A, x) is continuous in A, we
have that IIF(A)-F(A*)II = lim"~ooIIF(Ak-F(A*)11:(;8*. Therefore,
F(A) ELand the conclusion holds.

Remark I. By Ascoli's Theorem the set L is also equicontinuous.

LEMMA 3. If F(A *) is a normal point and Xl'"'' X n are any n = d(A *)
distinct points in [0, I], then there exists a 8 > 0, such that IF(A *, x,) - Yji [:(; 8
implies there is a unique F(A) E V such that F(A, x,) = Yj, for i = 1,... , n
and F(A) E L.

Proof Choose E > 0 such that il A * - A II < E implies F(A) E L. The
conclusion follows immediately from Lemma I.

From Barrar and Loeb [3] we have Lemmas 4 and 5.

LEMMA 4. For arbitrary E > 0, there is as> 0 such that for 8 :(; 8
we have

(a) D(8) = {u E D: dist(u, C) :(; 8} is closed, and

(b) u E D(8) implies the system of equations

F(A, u,) - feu,) = (_1)iYj, for i = I, ..., n + I,

has a unique continuous solution (A(u), Yj(u)), where A(u) E P andll A - A * II < E.

LEMMA 5. There exists positit'e numbers E and 8 such that for any U E D(S)
and A E P with the properties

(a) II A - A * II < E, and

111 A - A II = maXV,";N I a, - ii, I.
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(b) sign(F(A, Ui) - f(ui» = -sign(F(A, Ui+l) - f(ui+1)for i = 1,... , n,
the solution (A(u), 1J(u» to the equations F(A, Ui) - f(ui) = (-I)i1J for
i = 1,... , n + 1 satisfy

n+1
[ 7](U) [ = L 8; IF(A, u;) - f(u,) I,

,~1

where "L.::1
1

8i = 1, 8i ;?: 1 - 8 for i = I, ... , n + I and 8 E (0, I).

We need one more result to ensure that the Remes algorithm can be
carried out successfully.

LEMMA 6. Assume that F(A *) is a best approximation over [0, 1] to the
normal f E qo, 1] with d(A *) = n. Given that S > 0, there exists a number
K where 0 < K < Ilf - F(A*~ such that if

(1) yED,

(2) F(A) - f alternates over Y, and

(3) IF(A, Yi) - f(Yi)! ;?: Kfor i = 1,... , n + I, then Y E D(S).

Proof The result is obvious if f = F(A *), so we assume that
II F(A *) - fll > o. Now, assume that the result is false. Then, there exist
sequences {Km}, {Am}, and {ym} such that {Knl} converges to II F(A*) - fll,
F(Am) - f alternates over y m ED, !F(Am, yr) - f(yr) I ;?: Km for all m
and i, and ym f/= D(S). By going to subsequences if necessary, we can assume
that ym converges to y = (Y1 ,... , Yn+l) ED; Y f/= C since none of the ym are
in D(S). Without loss of generality, assume that f(Y1m) - F(Am, Y1) > 0
for all m. Let Fi = limm->ao sup f(yr) - F(Am, Yi), for i = 1,..., n + 1.
Note that Fi ( -1 )i+1 > 0 and that IF i I = OCJ is allowed. Also,

I Fi [ ;?: lim Km = II F(A*) - fll. (4)
m---')'f.j

Claim. f(Yi) - F(A*, Y,) = Fi

Proof of Claim. Assume false. Then, IF, I > IF(A *, Yi) - f(Yi)1 for
some i. With no loss of generality, assume that i = n + 1 and let y =

IFn+1 I - IF(A*, Yn+1)I. By Lemma 3, for sufficiently small E, 8 > 0 with
E < y, we can find a A E P such that

IF(A, Yi) - f(Y,)1 ~ II F(A*) - fll - 8, for i = 1,... , n,

with I! F(A *) - F(A)II < E/2. Now, choose m so that

Km > II F(A*) - fll - 8/2
! F(A, y,m) - F(A, y,)[ < 8/4, for i = 1, , n,

If(yr) - f(Yi) I < 8/4, for i = 1, , n,

IF(A *, Y~l) - f(Y~~l) - [F(A*, Yn+1) - f(Yn+l)]! < E/2,
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and

Then, for i = 1,... , n

IF(A, yr) - f(y,m)1 < IF(A, Yi) - f(Y,)1 + 812,
~ II F(A*) - fll -8 + 812 < Km,

~ I F(Am, y,m) - f(y."")I.

Also,

I F(A, y;:'+1) - r(Y~~l)1 < IF(A*, Y;:'+1) - j{Y;:'+1)i + E/2,
since II F(A *) - F(A)II < E/2,

~ if(A*, Yn+l) - F(Yn+l) I + E,

< I F(Am, Y;:'+1) - f(Y;:'+1)I.

Thus,

137

for i = 1,... , n + 1.

Since F(Arn, yr) - f alternates over n + 1 points, we must have that
F(Arn) - F(A) has n zeros, which is impossible. Thus, the claim follows.

By the claim, we have

IF; I = IF(A *, y.) - f(Y,)1 ~ II F(A *) - fll.

Thus, from (4) and (5),

(5)

IF, I = II F(A*) - fll, for all i.

But Fi is alternately positive and negative, hence, Y E C, which is a contra
diction. Thus, the lemma holds.

4. CONVERGENCE OF THE REMES ALGORITHM

The Remes algorithm is described as follows:

ALGORITHM. Having chosen Am and um such that ur E M for i = 1,... ,
n+1and

sign(F(Am
, ut) - f(Uim)) = - sign(F(Am, U7:-1) - f(u,,!'n)),

for i = 1,... , n, solve the system

F(A, u,m) - f(u,m) = (_1)i7], for i = 1,... , n + 1
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to obtain Am+! and TJm+!. Then, choose um+! such that u;,,+! E M for i = 1,... ,
n+land

(a) sign(F(Am+l, u;"+l) - f(u;"+l» = - sign(F(Am+l, u7'+i1) - f(u7'+i1»,

for i = 1,... , n

(b) ['l1n+1 [S:: min I F(Am+l u,!,+l) _ ji(um+1) ,
"/ -.....::::: t:s;;.i<,n+l ' 1 1. j,

and

To ensure that the algorithm can be carried out successfully, we define
the following numbers.

(i) Choose S* > °such that the set L in Lemma 2 is compact.

(ii) Choose E, S > °such that Lemmas 4 and 5 are satisfied and such
that II A - A * II < E implies F(A) E L.

(iii) Choose K such that Lemma 6 is satisfied for the S chosen in (ii).

We assume that the initial estimates AO and UO satisfy:

(a) II AO - A * [I < E,

(b) F(AO, x) - f(x) alternates in sign over uO, and

(c) min1.(,<n+l I F(AO, u,O) - f(u,O)I, ;?: K.

THEOREM 1. Let Am denote the mth iterate of the Remes algorithm and
let um denote the critical set associated with Am. Then,

(1) II Am - A*I[ :::;: E,

(2) um E D(S),

(3) F(Am, x) - f(x) alternates in sign over Um , and

(4) min1<i<n+l IF(Am, ur) - f(ur)1 ;?: K,

hold for m = 0, 1,2,... , .

Proof The proof is by induction on m. For m = 0, we have (1), (3), and
(4) by assumption. By Lemma 6, UO E D(S).

Now, assume that (1)-(4) hold for m ~ k. We solve the system F(A, u,k) 
f(Ui k) = (-1 )iTJ to obtain A k+l and TJk+!. The solution exists by Lemma 4
since Uk E D(S). Also by Lemma 4, II Ak+l - A * II < E. Thus, (1) is satisfied
for m = k + 1. By Lemma 5, 7Jk'-l = L:::::: 0, I F(Ak, ul) - f(ul) I, where
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'L.;:ll Oi = 1 and Oi > 0 for all i. Now, Uk+! is chosen such thatF(Ak+!, x) - f(x)
alternates over Uk+!. Thus, (3) is satisfied. Also,

min I F(Ak+! Uk+l
) - f(u k+!) I ;;::;, 7Jk+l,

l-<..-:;~n+l ' t 't

n+l
;;::;, L Oi min I F(Ak, u/) - feu,!')!,

l+l l::(i:S;:n+l

= min I F(Ak, li,k)1 ;;::;, K.
l';;;I';;;n+1

Therefore, (4) is satisfied. By Lemma 6, uk+l E D(S). Thus, (2) is satisfied for
m = k + 1 and the proof is complete.

We have shown that the algorithm can be carried out successfully. Now,
we show that the sequence of functions generated by the algorithm converge
to F(A'\!) E V and that F(AM) is a best approximation to f over M.

THEOREM 2. There is as> 0 such that a best approximation to f over
the finite set M exists whenever M is finer than 15 and the sequence offunctions
generated by the Remes algorithm converge to F(AM).

Proof Choose 15, 15*, €, and K as above. From the continuity hypothesis
of the nonlinear family, we certainly can find AO and UO with UI E M that
satisfies (a), (b), and (c) above by taking 15 and € even smaller. Then, the
previous theorem guarantees a sequence {F(Am)}:~1 of well-defined functions
in V. The set of all u E D(S) with u, E M is finite. Hence, the sequence
{F(Am)l~~1 has a finite number of distinct elements. From the proof of
Theorem 1 and (b) in the Remes algorithm, we have

Thus, the sequence {7Jm}:~1 is monotone increasing and eventually must be
constant. Thus, {F(Am)}:~1 eventually must be constant. Let F(Am) =
lim",_,x F(Am). Assume that F(AM) is not the best approximation to f over M.
Then, there exists an A E P such that

II F(AM) - flL\[ > II F(A) - flL\[ .

But there exist n + 1 points Xl < X 2 < ... < XU+l such that

ii F(AM) - fliM = I F(AM, x,) - f(x;)i, for i = 1'00" n + 1

and F(AM) - f alternates over those points. This implies that F(AM) - F(A)
has at least n distinct zeros, which is a contradiction. Thus, F(AM) is the
best approximation to f over M.
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5. ON CONVERGENCE TO F(A *)

We have seen that if M is fine enough, then a normal point f has a best
approximation over M. In this section, it is shown that as M becomes finer
the best approximation to f over M converges to a best approximation over
the interval. The result presented here is a generalization of one obtained by
Werner [7], who was concerned only with the family of rational functions.
We need the following result from [1], which is a generalizationof the familiar
Strong Uniqueness Theorem.

THEOREM 3. Let F(A*) be a best approximation to fE qo, 1]. There
exists an ex > 0 such that for each A E P

II F(A) - fll ;? F(A*) -fll + ex II F(A) - F(A*)II.

To obtain a measure ofthe rate ofconvergence, we use the following notation.
If g is a continuous function on [0, 1] let

wg(h) = ,max I g(x) - g(y)1
,x-yl<h

and if§ is a family of continuous functions on [0, 1] let

Qy- is the joint modulus of continuity of the family §.

THEOREM 4. Let f(x) be a normal point with modulus of continuity w(h)
and best approximation F(A *) over [0, 1]. For 8*, 8 chosen as in Lemma 2 and
Theorem 2, respectively, let Q(h) be the joint modulus of continuity for L =
{F(A): II F(A) - F(A *)11 :(; 8*}. Then, for each grid M finer than 8, a best
approximation F(AM) over M exists and satisfies

II F(AM) - F(A *)11 :(; K(w(8) + Q(8»,

where K depends only on f

Proof A best approximationF(AM) exists by Theorem 2. From Theorem 3
we have

ex II F(AM) - F(A*)II ::::;; Ilf - F(AM)I! -Ilf - F(A*)II. (6)

Also, Ilf - F(AM)!I = If(xo) - F(AM, xo)l, for some XoE [0, 1] and there
exists XM E M such that I XM - X o I < 8. From (ii) in Section 4 and Theorem 1
we see that F(AM) E L.
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ilf - F(AM)II = I!(Xo) - F(AM, xo)l,
~ !!(xo) - !(xM)1 + !!(XM) - F(AM, xM)1

+ 1F(AM, XM) - F(AM, xo)l, (7)

~ w(S) + Ilf - F(AM)IIM + Q(S),

~ w(S) + Q(S) + Ilf- F(A*)!i.

By (6) and (7) we have

a II F(AM) - F(A *)[1 ~ w(S) + Q(S).

Thus, the conclusion holds.
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